• Department Name: Mechanical Engineering Department

• PG Program Name: M.Tech. Mech. Heat Power Engineering

• Vision :-

To transform the department into center of excellence by synergizing teaching, learning and research to produce globally competent, innovative and entrepreneurial Mechanical Engineers.

• Mission :-

- i. To develop state of the art facilities to stimulate faculty, staff and students to create, analyze, apply and disseminate knowledge.
- ii. To build the competency to transform students into globally competent mechanical engineers by imparting quality education.
- iii. To collaborate with research organizations, reputed educational institutions, industries and alumni for excellence in teaching, research and consultancy practices.

Sr. No.	Program Outcomes
1.	An ability to independently carry out research /investigation and development work to solve practical problems
2.	An ability to write and present a substantial technical report/document
3.	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program
4.	To accomplish collaborative and multi-disciplinary scientific research with consideration of professional, legal, and ethical issues
5.	Manage the projects and its financial aspects on the strength of engineering knowledge and management principles
6.	Engage in lifelong learning to address contemporary issues through independent and reflective learning

Sr. No.	Semester	Course Code	Course Name	Course Outcome
1	I	SHP513	Advanced Mathematical Methods in Engineering	CO_1 Evaluate Fourier Series and Fourier Transforms for given function and apply it to solve the partial differential equations in Engineering problems. CO-2 Apply the specific method of solution of partial differential equations for solving the given problems. CO-3 Formulate and solve a boundary value problem (Partial differential
				equation, boundary and initial

Sr. No.	Semester	Course Code	Course Name	Course Outcome
				conditions). CO-4 Use the relevant method for solving the simultaneous linear equations and compute the Eigen values. CO-5 Estimate numerically the solution of given algebraic equation. CO-6 Analyze the variance and explain the different research designs.
2	Ι	MHP1012	Advanced Thermodynami cs and Combustion	 CO_1. Illustrate different thermodynamic relations. CO_2. Explain different behavior of thermodynamics gases and their relations. CO_3. Interpret thermodynamics properties relations to various mixtures and solutions. CO_4. Compare thermodynamics equilibrium of system CO_5. Analyze combustion theories of various fuels. CO_6. Assess the combustion applications to various systems
3	Ι	MHP1022	Advanced Heat Transfer	 Develop a solution to Heat Transfer problem. Analyze heat transfer problem. Solve Heat Transfer Problem Formulate Heat transfer problem by analytical and numerical method
4	Ι	Program Elective I MHP 1032	Compressible and Incompressible flows	 Explain basic concepts in the fluid mechanics. Analyze practical problems of fluid flow. Explain concepts of boundary layer theory. Understand the performance of fluid flow devices in laminar and Turbulent flows. Apply the concepts in the analysis of fluid flow problems
5	I	MHP1052	Design of Pumps, Compressor and Blower	 CO_1. Select suitable Pump, Blower, fan or compressor for a given application. CO_2. Design Pump, Blower, fan or compressor for a given application. CO_3. Model and simulate Pump, Blower, fan or compressor.

Sr. No.	Semester	Course Code	Course Name	Course Outcome
6	Ι	MHP1062	Advanced Refrigeration	 CO_1. Identify and explain different components of refrigeration. CO_2. Calculate cooling load of given system. CO_3. Select and design various equipment of refrigeration system. CO_4. Develop and suggest refrigeration plants for given conditions. CO_5. Apply the basic principles of low temperature engineering and applications
7	Ι	MHP1072	Gas turbine and Jet Propulsion	 CO_1. Describe the ideal and real thermodynamic cycles of air-breathing engines and Industrial gas turbines. CO_2. Design the blading, study the velocity triangles and estimate the performance of centrifugal and axial flow compressors. CO_3. Explain the combustion process and design the combustion chamber of a gas turbine. CO_4. Design the blading, study the velocity triangles and estimate the performance of axial and radial in-flow turbines. CO_5. Analyze the off-design performance and matching of the components of a gas turbine.
8	I	Program Elective II MHP1092	Advanced I C Engines	CO_1. Analyze SI and CI engines fuel system and combustion process. CO_2. Summarize recent engine trends CO_3. Compare simulated and/or experimental performance and emissions of I C Engines with alternative fuels CO_4. Model engines flow and combustion process.
9	I	MHP 1082	Air Conditioning System Design	 Determine cooling load on the system by considering various heat sources Select suitable air distribution method, distribution outlet and inlet, and fan. Design cooling and heating equipment, air handling system

Sr. No.	Semester	Course Code	Course Name	Course Outcome
10	I	MHP1102	Utilization of Solar Energy	 CO_1. Estimate and quantify available solar radiation CO_2. Judiciously design the solar energy collection system CO_3. Justify basic economics of solar energy systems
11	Ι	MHP1112	Combustion Engineering	 CO_1. Calculate the stoichiometry, adiabatic flame temperature and heat of combustion of a fuel and oxidizer mixture CO_2. Use computer codes to solve combustion problems CO_3. Calculate the structure and properties of a premixed flame: propagation speed, thickness, quenching distance, and minimum ignition energy.
12	Ι	MHP1122	Advanced Power Plants	 CO_1. Explain analytical and technological aspects of power plant design, systems and their effects. CO_2. Analyze and explain various power plants. CO_3. Summarize advanced power cycles. CO_4. Recognize environmental issues. CO_5. Estimate economics of
13	I	SHP551	Technical Communication	 power plants. 1. Acquire skills required for good oral and written communication 2. Demonstrate improved writing and reading skills 3. Ensure the good quality of oral and written communication
14	Ι	MHP1132	Modeling and Meshing Laboratory.	CO_1. Model the thermal component or part using suitable software CO_2. Create computational domain for selected geometry CO_3. Generate mesh and refine mesh elements of given geometry
15	Ι	MHP1142	Thermal Engineering Lab-I	 CO_1. Conduct test and interpret the theoretical and experimental data of conduction and convection experiments. CO_2. Relate the theory and the experimentation pertaining to thermal system. CO_3. Examine various thermal systems
16	Ι	MHP1152	Computational Methods in	CO_1. Develop codes for numerical methods to tackle simple thermal

Sr. No.	Semester	Course Code	Course Name	Course Outcome
			Thermal Engineering Lab	problems CO_2. Simulate codes of computational methods of given conditions CO_3. Analyze and validate output of written codes with analytical solution
1	II	MHP2012	Computational Fluid Dynamics	 CO_1. Derive governing equations for fluid dynamics and heat transfer. CO_2. Develop finite difference implicit & explicit algorithms for fluid flow and heat transfer problems. CO_3. Develop finite volume algorithms for fluid dynamics equations. CO_4. Select appropriate grid generation methods for CFD analysis. CO_5. Apply different CFD Techniques to various fluid flow problems
2	Π	MHP2022	Design of Thermal System	 CO_1. Illustrate basic principles of modeling and optimization of design of thermal systems. CO_2. Develop mathematical model of real processes and systems. CO_3. Design thermal systems. CO_4. Simulate thermal system.
3	II	MHP2032	Design of Heat Exchanger	 CO_1. Select suitable heat exchanger for particular application. CO_2. Formulate basic design method for heat exchangers CO_3. Analyze fouling in heat exchangers. CO_4. Design heat exchangers
4	II	MHP2042	Cryogenics	 CO_1. Apply the basic principles of low temperature engineering. CO_2. Explain the behavior of solids and liquid at low temperatures CO_3. Analyze cryogenic systems. CO_4. Discuss gas separation systems. CO_5. Design Heat Exchangers for Cryogenic System.
5	II	MHP2052	Advanced Materials for Thermal System	CO_1. Select suitable material for thermal systems CO_2. Justify use and suitability of thermal materials for different systems CO_3. Prepare advanced materials

Sr. No.	Semester	Course Code	Course Name	Course Outcome
				for different applications CO_4. Explain applications of thermal materials
6	Π	MHP2062	Food Processing, Preservation and Transport	 CO_1. Analyze mechanism of food spoilage CO_2. Design suitable food processing and preservation system CO_3. Select suitable cold storage system CO_4. Design and analysis transport system of preserved foods CO_5. Model the preservation system
7	Π	Program Elective-III MHP2072	Advanced Thermal Storage Technilogy.	CO_1. Select thermal storage systems and the storage materials CO_2. Develop a model and analyze the thermal storage systems CO_3. Explain applications of thermal storage systems
8	Π	Program Elective-IV MHP2092	Finite Element Method for Thermal Engineering	 CO_1. Establish the mathematical models for the complex analysis problems and predict the nature of solution. CO_2. Formulate element characteristic matrices and vectors. CO_3. Identify the boundary conditions and their incorporation in to the FE equations CO_4. Solve the problems with simple geometries, with hand calculations involving the fundamental concepts. CO_5. Interpret the analysis results for the improvement or modification of the system
9	Π	MHP2102	Simulation of IC Engines	 CO_1. Conversant with Basic Concept of Modeling CO_2. Develop modeling of IC engines. CO_3. Simulate IC Engines processes and its new concepts cycles. CO_4. Analyze engine processes and performance using advanced simulation models.
10	Π	MHP2112	Cogeneration and waste heat Management	 CO_1. Estimate and quantify available waste heat CO_2. Tap opportunities of waste heat recovery CO_3. Explain economics of cogeneration and waste heat recovery systems

Sr. No.	Semester	Course Code	Course Name	Course Outcome
11	Π	MHP2122	Steam Engineering	 CO_1. Explain different types of boilers with their constructional and functional significance. CO_2. Design fuel preparation units and boilers. CO_3. Analyze the emission aspects of boiler.
12	II	MHP2132	Research Methodology & IPR	 Formulate a research problem. Analyze research related information. Prepare and present research proposal/paper by following research ethics. Make effective use of computers and computing tools to search information, analyze information and prepare report. Describe nature and processes involved in development of intellectual property rights
13	II	MHP2142	Computational Fluid Dynamics Lab	CO_1. Formulate problems in fluid flow and heat transfer. CO_2. Develop codes for numerical methods to solve heat transfer problems. CO_3. Use commercial software ANSYS for solving real life engineering problems
14	Π	MHP2152	Thermal Engineering Lab-II	CO_1. Conduct test and interpret the theoretical and experimental data of conduction and convection experiments. CO_2. Relate the theory and the experimentation pertaining to thermal system. CO_3. Examine various thermal systems
15	Π	MHP2162	Comprehensive Viva-Voce	 CO_1. At the end of the course the students will be able to, CO_2. Comprehend the knowledge gained in the course work. CO_3. Defend principles of working of thermal energy systems. CO_4. Show the ability in problem solving and to communicate effectively
16	II	MHP2172	Mini Project	 CO_1. Solve a live problem using software/analytical/computational tools CO_2. Write technical reports. CO_3. Develop skills to present and defend their work in front of technically qualified audience

Sr. No.	Semester	Course Code	Course Name	Course Outcome
17	Π	MHP2182	Industry Internship	 .1 Identify the real applications and practices of courses studied, at industry level 2. Recognize various modeling , analysis and validation techniques adopted at industries. 3. Demonstrate the issues at design, manufacturing and assembly levels. 4. Summarize and present technical data in report format.
1	III	MHP3012	Online courses	
2	III	MHP3022	Dissertation Phase I	 CO_1. Explain the contributions of various researchers in the field of thermal engineering after carrying out literature survey from reputed journals CO_2. Recognize the gap in the research and define a problem statement CO_3. Explain significance and applicability of problem statement CO_4. Summarize and present technical data in report format
3	III	MHP3032&3 0342	Dissertation Phase II	 CO_1. Outline the work plan for problem statement CO_2. Identify the proper modeling and analysis tool CO_3. Reproduce the preliminary results of problem statement CO_4. Summarize and present technical data in report format
1	IV	MHP4012	Dissertation Phase III	 CO_1. Explain the issues related to method adopted in solving the problem CO_2. Select proper technique in solving the problem CO_3. Compare the results with available literature.
2	IV	MHP4022 & 4032	Dissertation Phase IV	 CO_1. Design new methodology to address the problem CO_2. Justify the results obtained from new methodology CO_3. Write technical report and defend work.